Generating Real-Time Strategy Game Units Using
Search-Based Procedural Content Generation and Monte

Carlo Tree Search

Kynan Sorochan, Matthew Guzdial

Department of Computing Science, Alberta Machine Intelligence Institute (Amii)

University of Alberta, Edmonton, Alberta, Canada

Abstract

Real-Time Strategy (RTS) game unit generation is an unexplored area of Procedural Content Generation (PCG) research,
which leaves the question of how to automatically generate interesting and balanced units unanswered. Creating unique
and balanced units can be a difficult task when designing an RTS game, even for humans. Having an automated method of
designing units could help developers speed up the creation process as well as find new ideas. In this work we propose a
method of generating balanced and useful RTS units. We draw on Search-Based PCG and a fitness function based on Monte
Carlo Tree Search (MCTS). We present ten units generated by our system designed to be used in the game microRTS, as well
as results demonstrating that these units are unique, useful, and balanced.

Keywords

Real-Time Strategy, RTS, Procedural Content Generation, PCG, Monte Carlo Tree Search, MCTS

1. Introduction

Artificial Intelligence methods can help game developers
improve their games and create new content.

In this paper we aim to show that the Al technique
of Procedural Content Generation (PCG) can be imple-
mented in Real-Time Strategy (RTS) games, particularly
in the generation and balancing of new units.

Balance within RTS games can be an ongoing concern
for developers. As players invent new strategies, new
imbalances within the game can be revealed. For example,
StarCraft 2 has continued to receive unit additions and
balance patches for more than 10 years [1], showing the
game has still not reached perfect balance. This indicates
the process of generating interesting and balanced units
is lengthy and difficult. Using Al to help refine and speed
up this process could help reach a better state in less time.

PCG unit generation has focused around NPC gener-
ation [2] and boss generation [3] In PCG research, the
majority of work done around RTS games has been au-
tomated map generation [4]. Most other RTS games
research has not used PCG and has focused on creating
intelligent bots and strategies [5, 6, 7]. While prior work
has sought to automatically determine RTS unit balance
[8], no work to our knowledge has sought to generate
balanced RTS units.

In our research we attempted to create a way to utilize

The Joint Workshop Proceedings of the 2022 Conference on Artificial
Intelligence and Interactive Digital Entertainment

& ksorocha@ualberta.ca (K. Sorochan); guzdial@ualberta.ca

(M. Guzdial)

© 2022 Copyright © 2022 for this paper by its authors. Use permitted under Creative Commons License Attribu-
tion 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

PCG methods to help generate new units for the RTS
game, microRTS, a recognized RTS test-bed developed
by Santiago Ontafién [9]. We wanted these units to be
unique from the pre-existing units in terms of their fea-
tures and mechanics, and to keep the game balanced. We
implemented a Search-based Procedural Content Gener-
ation (SBPCG) approach with a fitness function based on
an adaptation of existing work on an Monte Carlos Tree
Search (MCTS)-based measure of game balance [10].

In this paper we will show our approach for gener-
ating interesting and balanced units for microRTS. We
cover our SBPCG approach, which greedily attempts to
improve an initially random unit through a measure of
game balance. We describe the first ten generated units
from our approach, as a demonstration that it can out-
put many possible units. We evaluate these ten units by
showing the results of having bots of varying skill levels
use them, which indicates that they are both useful and
balanced.

2. Related Work

In this section we overview prior work done in RTS
games using PCG techniques, unit and mechanics gener-
ation in video games, and strategies to determine balance
within games. While there’s been significant prior work
on Al for playing RTS games [7] and generating strate-
gies to play these games [6], we do not include a detailed
discussion of these topics as they are distinct problems
from the ones we focus on in this paper.

PCG has been applied previously in the domain of RTS
games for map generation [11, 12, 13]. [14] presented

mailto:ksorocha@ualberta.ca
mailto:guzdial@ualberta.ca
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

work on applying evolutionary search to StarCraft map
generation. Using several fitness functions, they were
able to produce playable and balanced maps . In another
search-based PCG approach, [15] devised a system that
takes into account objectives relating to predicted player
experience. The algorithm must balance these objec-
tives when selecting maps from the search space as some
objectives are partially conflicting. Like both of these
examples, we employ search-based PCG, but with a focus
on unit generation.

Unit and game mechanics generation has been
researched for many years. [16] demonstrated a
constructive-PCG approach to generate new chess-like
games. Pell’s program created new movement rules
within specific limitations and applies them to different
chess pieces. [17] created an evolutionary system that
generates different mechanics for platform games imple-
menting a search-based approach using code reflection.
The system’s fitness function chooses specific output
mechanics based on their performance in game, similar
to our generation process. [18] introduced the idea of
conceptual expansion, a method where existing games
are recombined to create new games. They tested their
method by using it to recreate pre-existing games. [3]
designed a generative space of dynamic behaviors to cre-
ate bosses of varying complexity for games. Our domain
differs greatly from these as we employ PCG to generate
specific units and balanced mechanical effects for them,
not on generating general rules or an entire game. We
additionally must take into account specific RTS-game
features like currency that might not be a consideration
in other types of games.

Achieving balance can be a tricky in many games. For
our work we wanted to make sure that we had a way of
determining that the game is still balanced once we add
new units. We do not contribute new technical solutions
to this problem. In work by [10], they used simulated
agents of varying levels of competency to model play-
ers playing scrabble and a simple card game. They used
the win-rates of the different skill levels to approximate
whether the game was balanced or not. We draw on
this approach specifically to inform our fitness function
and evaluation. [19] employed an approach of measur-
ing game quality through self-play simulations. [20]
attempted to model human behaviour from examples to
better simulate player actions. We identify both of these
as possibilities for future work, but note that collecting
enough human player data would be a large roadblock.

3. Background

Before we explain our system for generating RTS units, it
is important to be familiar with microRTS, the platform
we use in our work. microRTS, developed by Santiago

Ontafidn [9], was created for Al research. It is advanta-
geous to use over other RTS games due to its simplistic
design. Most other RTS-games are large and complex,
having dozens of units, abilities, and other details that
would greatly expand our search space. Thus a simpler
domain was appropriate for this initial exploration of our
approach.

microRTS is played in an 8x8 grid space, each player
starting in opposite corners with resources, a base, a
barracks, and a worker. Workers mine resources and
return them to the base while players make more workers
from the base and army units from the barracks. Army
units can attack other units and buildings with varying
power and range. Actions taken by both players occur
simultaneously without pauses. The game is over once all
of one of the players’ units and buildings are destroyed,
or the game timer reaches a pre-determined threshold.
In the base game three army units can be made. A light
armored melee unit, a heavy armored melee unit, and
a light armored ranged unit. In our modification we
generate a fourth unit with varying stats that can be
made in the barracks.

4. System Overview

In this section we outline our search-based generator for
RTS units. We visualize this process in Figure 1. Our
method has 3 major components: the search space that
defines the unit stats and abilities, the evaluator that tests
different units from the search space, and our search
method that explores the search space.

4.1. Search Space

Our search space is defined by the different stats of units
in microRTS, and our hand-authored space of mechanics
defined in terms of causes and effects. We did not include
every unit stat in our search space, but focused on specific
ones we felt were impactful for creating an interesting
new unit. The stats that made up our search space were:

« Resource Cost: The number of resources needed
to build the unit [1,3].

« HP: The number of hit points [1,4].

« Damage: The amount of damage done per attack
[1,4].

« Attack Range: How many squares away the unit
can attack another unit [1,3].

+ Move Speed: How many in-game seconds are
needed to move to an adjacent square [5,14].

«+ Attack Time: How many in-game seconds are
needed to deal damage to an enemy unit within
range [3,7].

o—g

Generate Random
Unit

Attack = Random
Range = Random

Speed = Random
Etc...

Choose Best
Neighbor, Repeat

Stop Once Neighbor
Can’t Outperform
Original

Neighbor 1

| —
Y

Neighbor 2

Neighbor n

| —

Evaluator

Figure 1: Our search-based unit generator. First a unit is initialized at random. From there we pass it to a greedy search
process, which iteratively improves the unit by selecting neighbours in the search space according to an MCTS-based fitness

function.

The values above are the ranges used when generating
the initial random unit. It is possible for some stats to
reach outside this range while generating neighbours. It
is not possible for any value to go below 1.

Outside of states, we also added a new aspect to the

game: unit abilities, previously not a part of microRTS.

Our generated units each have an ability, defined by a
cause and effect. The possible causes to trigger the ability
and effects of the ability were:

4.1.1. Causes:

. When the unit dies

. When the unit takes damage

. When the unit deals damage

. When the unit attacks at least three times

O I SR

4.1.2. Effects:

1. Return resources to the unit’s player equal to cost
of the player’s unit for causes 1 and 2, or of the

unit being attacked for causes 3 and 4.

2. Do damage back to an attacking enemy for causes
1 and 2, or do a second attack for causes 3 and 4.

3. Heal the unit up to 3 hit points.

4. Double the attack speed for causes 2, 3, and 4, or
cut the opponents attack speed in half for cause
1.

4.2. Evaluator

Our search-based PCG approach requires an evaluator
of the units to act as a fitness function. Our evaluator,
visualized in the centre of Figure 1, consists of a series of
games played in which the unit can be tested. For each
call to the evaluator, a unit is evaluated over two rounds
of game play where two Monte Carlo Tree Search bots
would use the generated units. In the first round, one bot
would have access to the new unit and the other would
not. We tracked how many games the new unit was
made, how much time it was alive for in each game, and

how many times the bot with the new unit won the game
when it made the unit. This first round was meant to
approximate the utility of the unit. In the second round
both bots would have access to the new unit. We then
tracked how many games each bot made the new unit,
and in how many of those games it won. This second
round was meant to approximate the balance of the unit.
Each round consisted of 10 games, totalling 20 games per
unit.

Once the rounds were complete, the collected results
would be passed through a fitness function to approxi-
mate the quality of a unit in terms of utility and balance.
The fitness function was divided into two parts, one from
each round, that would be added together to give an over-
all final fitness. The higher the fitness, the better the unit
overall. In round one the purpose of the games was to de-
termine the utility of a unit. The most important metrics
to measure this were first how many times the bot made
the unit and won. If the unit was useful, it should help
the bot win more times than it causes it to lose. Second
was how long the unit lasted in the game. We assume
that the longer a unit exists in a game, the more of an
impact it will have on the overall outcome of the game.
A higher fitness could be achieved by increasing both of
these metrics. The part of the fitness from round one was
determined by

Y (score + %)
—_— ¢y
Y
where « is the time the new unit was alive in game for,
B is the total game time, and y is the total number of
games played where the unit was made. The score is the
summed total of wins (+1) and losses (-1) of the bot in
games where the unit was made. The % is positive if the

game was a win, and negative if it was a loss. y was used
to normalize the round one part of the fitness.

The purpose of round two was to determine the bal-
ance of the new unit. In this round, both bots would have
access to it. Therefore, we would anticipate a fifty per-
cent win-rate, unless the unit gave an unfair advantage
based on player location, or one player stumbled upon an
imbalanced strategy using the unit. If the unit allowed
for an imbalanced strategy, then it is likely the player
that made it first would most often win, or the player
that didn’t make it would never win. The round two part
of the fitness was determined by

1— abs(0.5 — —< 2
05~ 7 @
where € is the number of games won by player 1, {'is the
number of games player 1 made the unit, and 7 is the
number of games player 2 made the unit. This roughly
equates to the win percentage of player 1. Initially we
intended to subtract the number of games the new unit

was made by both players from { and . However we

found that the units produced still appeared to be bal-
anced without this additional calculation, which we will
show in our results later on in this paper. If the win
percentage of Player 1 is 50%, that means it is the same
for Player 2, indicating the unit keeps the game balanced.
Once the values from equations 1 and 2 are calculated
they are totaled for a final fitness for each unit in the
neighbor list.

4.3. Search Method

Our search method uses a greedy or hill climbing ap-
proach to find local maxima within our search space
using the data collected from the evaluator step. There
could be many possible new units that could be consid-
ered interesting and balanced, so we focus on a greedy
approach that can quickly find local maxima. Our search
process began by generating a unit at random, with an
arbitrary cause and effect, as discussed above. To gen-
erate neighbours, we’d alter the unit by incrementing
and decrementing each state, and by making all possible
cause and effect replacements. If any of the neighbour
units outperformed the current unit in terms of the above
fitness function, it became the new current unit and the
cycle continued. Otherwise, we had reached a local max-
ima and returned the current unit.

5. Units Generated

We give the first 10 output units from our system in Table
1. We did not stop our system from generating similar
units, but despite this each unit is reasonably distinct.
We assigned a name to each unit inspired by its unique
traits. Visuals of the units are not included as they all
look the same within the game, an example of which can
be seen in Figure 1.

+ Revenger: is slow and tanky, boasting the high-
est HP score of 4 and the slowest attack speed
of 10 in-game seconds. Its health combined with
a long range of 3 makes it difficult to kill. Once
killed, it exacts revenge by dealing damage to the
unit that killed it, thus the name “Revenger”.

« LooTennet: has one of the fastest movement
speeds at 7 in game seconds. Its range, HP,
and damage are low, but its design isn’t to kill
units, but to collect their “Loot”. Every time the
“LooTennet” deals damage to an enemy unit, the
owner of “LooTennet” receives resources equal to
the production cost of the enemy unit damaged.

« Phoenix: has only 1 HP, but it deals 3 points
of damage per attack and has one of the fastest
attack speeds at 3 in-game seconds. These stats
allow it to kill most other units before it can be
hit itself, making it a glass cannon. In the event

Name Cost | HP | Damage | Range | Move Time | Attack Time | Cause | Effect | Fitness
Revenger 3 4 2 3 13 10 1 2 1.3397
LooTennet 3 2 2 1 7 7 3 1 1.3773
Phoenix 2 1 3 1 15 3 1 1 1.3577
Penny Pincher 1 3 1 2 10 8 4 1 1.0068
Slinger 1 3 2 3 11 3 4 2 0.7911
Statue 1 4 1 3 11 5 4 1 0.9153
Lawman 2 1 3 2 11 3 3 2 0.8511
Barrage 1 3 2 4 13 3 4 2 0.7255
Hunter 1 3 2 1 7 6 4 1 1.0819
Chopper 2 1 2 2 7 5 2 4 0.6816
Table 1

Our first ten generated units, with names given by us.

it does get hit, it will return the resources needed
to build it, allowing the player to create another
“Phoenix”.

« Penny Pincher: is a more average unit, but it
stands out in cost effectiveness. It costs only 1
resource but has a higher than average HP score
of 3. It even produces resources, as its return that
1 resource every third attack.

« Slinger: is short for “Gun Slinger” as this unit
has a high damage output due to it being able to
hit anything within a range of 3, with an attack
speed of 3 in-game seconds, and deal 2 damage
per hit. It also comes with the additional ability
to deal double damage every third attack. This
enables it to take down enemy units quickly.

« Statue: is similar to “Penny Pincher” in terms of
cost effectiveness and resource collection ability.
It is slightly slower in movement speed, but has
more HP, range, and a faster attack speed. These
advantages make target selection more important,
reducing the need for movement.

« Lawman: is most comparable to “Slinger” with
it’s fast attack speed and low HP. It’s cost is higher,
but the trade-off is it deals more damage. Since
it always attacks twice, it can instantly kill any
unit in the game.

« Barrage: is another fast attacker with an attack
speed of 3 and a long attack range of 3. It is well
equipped to be an artillery-style unit with the
ability to do two attacks instead of one every third
attack, sending a “Barrage” of damage toward the
enemy.

- Hunter: is similar to the “Penny Pincher” in abil-
ity to collect the resources of its target every third
attack, but deals slightly more damage per attack.
It is also faster in movement speed and attack
speed, though it sacrifices some range to accom-
plish this.

« Chopper: is the only generated unit with the
ability to double its attack speed when it takes

damage. “Chopper” has the fastest possible move-
ment speed and a fast attack speed relative to the
other units, enabling it to attack and move quickly,
much like a helicopter.

Interestingly, none of the generated units ended up
with the possible healing ability effect. This could be due
to microRTS games typically being short and not allowing
for unit longevity to impact the game in a significant way.
Alternatively, it could be that we simply did not generate
enough units, and that such a unit is in an undiscovered
local optima.

6. Evaluation

Our goal is to produce interesting and balanced new RTS
units. Ideally we’d have humans play with these units
and judge them, but it isn’t practical here. We’'d need
a huge number of playtests, where each player played
with each generated unit against other players with and
without the unit. This would require hundreds of games
for each player, which is not possible at this point in the
project. Instead we want to automatically determine the
balance and utility of our generated units.

We rely on the work of [10] in which they implement
an automated balance-testing method. They use Monte-
Carlo Tree Search (MCTS) agents of varying degrees of
skill. They then have the agents play against one another,
and track their win-rates. They argue that, for a balanced
game, units of the same skill level should have balanced
win-rates, while agents of varying skill levels should not.
Zook et al. only used this approach in static games, we
instead apply it new versions of microRTS with the new
units added. We use MCTS agents that play microRTS
and then track the win percentage of these agents as
well as other metrics. We used three different skill levels,
strong, medium, and weak. The difference in strength
between the agent came from their max tree depth and
max iterations budget. Strong had the largest tree depth
and iterations budget of 10 and 1000, Weak the smallest

of 2 and 250, and Medium had values of 5 and 500. We
use two rounds of play for each possible agent match-up.
(Ex. Strong vs Strong, Strong vs Medium, etc.) In the first
round, only player 1 has the new unit, and in the second
both players have access to it.

Balance is shown by the effect the new unit has on the
win-rate in the different scenarios. When the game is
balanced, evenly matched agents should have near equal
win-rates, and stronger agents should have higher win-
rates over weaker ones. When a new unit is introduced
and only given to one agent, it should give that agent an
unfair advantage if the unit is useful. If the unit is useful,
the win percentage of the agent with it should be greater
than the one it has when it has no advantage and the game
is balanced. If there is no change or even a decrease in the
win percentage, then the unit is useless. That advantage
should largely disappear when both agents can build the
unit, returning the win-rate to the expected value based
on agent strength.

Each match-up in each round consists of 100 games
per new unit. Across these games we tracked the number
of times the new unit was made by the agent(s) that could
make it, the amount of times each agent won when the
unit was built, and the average amount of time the new
unit survived in any game it was made. To ensure that
any change in win-rate was due to the unit, we decided
that if the average amount of games the unit was made
in for that round across all ten units was less than 25,
we would redo the games. This precaution was only
necessary one time for the Strong vs Strong match-up,
where in the first run through the average amount of
games the new unit was made was 7.4.

7. Results

P1 Win Percentage

Strong

44.2% +/-9 47.9% +/-5.9 69.7% +/-5.1

82.8% +/-2.5 45.4% +/-5.3 89.1% +/-4.2

P2 Agent Skill
Medium

Weak

96.6% +/- 2.1

99.3% +/-1.1 90.4% +/-2.6

Medium Weak

P1 Agent Skill

Strong

Figure 2: Average win percentage with standard deviation of
Player 1 when Player 1 can build the new unit and Player 2
cannot, averaged over the 10 new units. Bluer regions corre-
spond to a win percentage greater than 50%. Redder regions
correspond to a win percentage less than 50%.

We summarize the average win-rate when only one

player had the new unit across all the units in Figure
2. In nearly all match-ups we can see building the new
unit provided an advantage. The only match-ups we see
where the new unit did not providing an advantage is
in Strong vs Strong and Medium vs Medium. They are
close to 50%, suggesting that for these match-ups the
new units had no or a slightly negative impact. We found
that this result came about due to differences in how the
varying agents used the generated units. Across the test
runs the Strong agent built the new unit the least of all
agents, with an average percentage of games where the
unit was made across all 10 units being only 31.7%. For
comparison Medium vs Medium made the new unit on
average in 61.4% of games and Weak vs Weak an average
of 75.3%.

The Strong agent was the default microRTS agent,
with the largest search depth and iteration budget of the
three agents. All of the parameters and implementation
details of this agent were chosen with the original game
in mind. Therefore, its possible that they were not a good
fit to evaluate the impact of a new unit with effects well
outside the bounds of the default units. The agents with
less tuned setups may have been able to avoid this in
comparison.

We also found that the different agents were able to
better use different units. “Lawman” was most helpful in
Strong vs Strong with a 55% win-rate, whereas “Hunter”
had the worst win-rate at 26%. This doesn’t necessar-
ily mean that these are the best and worst generated
units. For example, in the Medium vs Medium match
up, “Lawman” had the worst win-rate at 39%. This actu-
ally supports our goal of generating interesting units by
showing that our method is capable of creating units that
impact the game differently at different skill levels. This
is especially important in RTS games as there is often a
high skill ceiling, with different units being stronger or
weaker depending on the player’s skill level.

The most impressive result is the performance of
the Weak agent. The Weak agent outperformed both
the Strong and Medium agents by a significant margin.
Across the different match ups the Weak agent seemed
more willing to experiment with the new units, as it usu-
ally had a higher average of amount of games where it
made the unit. This most strongly demonstrates the pos-
sible advantage given by our generated units, indicating
their utility.

Figure 3 gives the average win-rate of player 1 when
both agents could make the new unit. The heat map
overall displays the expected appearance for a balanced
game [10], which strongly suggests that these units are
overall balanced. Player 1’s win-rate decreased compared
to Figure 2 and vice versa for match-ups where player
1 is weaker, while the even match-ups moved closer to
50%. These changes from Figure 2 show the advantaged
that was granted by only one player having the new unit.

P1 Win Percentage

45.9% +/- 2.5

23.8% +/-3.1 35.0% +/-8.8

Strong

75.7% +/- 4.4 48.6% +/-5.2 18.5% +/-3

P2 Agent Skill
Medium

98.6% +/-1.3 78.1% +/-3.4 49.6% +/-5.2

Weak

Medium Weak

P1 Agent Skill

Strong

Figure 3: Average win percentage and standard deviation of
Player 1 when both players can build the new unit. The x-axis
indicates agent strength for Player 1, the y axis the agent
strength for Player 2.

The only match-up where we do not see the expected
effect is in the case where Player 1 is Strong and Player
2 is Weak. While Strong still beats Weak as expected,
Weak is more frequently winning than in the Strong vs
Medium match-up. We anticipate this is due to Weak’s
willingness to make the new units, compared to Strong’s
unwillingness.

Another interesting result is the drastic swing in win
percentages in some match-ups, for example in Weak vs
Medium. This and the Weak vs Strong result shows that
some of the new units might be a little “cheap” in terms of
giving lower skill players more of an advantage. However,
given that overall the trend follows our expectations, we
anticipate that on average the units are balanced.

8. Limitations and Future Work

Our goal in this work was to create a method of generat-
ing new, interesting, and balanced units in an RTS game.
From our results we conclude that our search-based PCG
method was successful. We created unique new units
that generally gave a player an advantage when only one
player could make them and that kept the game balanced
when both players could make them.

We believe that this method could be expanded and
refined by addressing some limitations we encountered
during our research. For example, in our experiment we
had the agents play on the standard map that is used
in the microRTS competition. While it doesn’t seem
that any of our units were map-specific, using a variety
of maps of different sizes and qualities, could lead to
generating different units.

It can be difficult to create automated agents that play
RTS games like a human would. As such, it’s unclear
if our units would be balanced if used by humans. We
didn’t use human playtesting, but would like to in the
future. Having human feedback would prove much more

valuable in creating units that make the game more inter-
esting for humans. Alternatively, the automated agents
could be further improved to play more like humans.
With examples of prior human playtraces we could draw
on approaches like [20] to attempted to bias our agents
to behaving more like humans.

During training, we only ran each round for ten games.
This was largely due to limited computation power,
which restricted the number of games played and the
parameters of our MCTS agents. More games with more
varied agents could potentially increase the balance of
the units.

In the future, we hope to expand this work and apply it
to a larger scale. Applying and improving this method to
work on a more complex game such as StarCraft Brood-
war or StarCraft 2 would be required to prove if this is an
approach that could work in an industry setting. How-
ever, a larger game with more features would lead to high
computation power costs. The way of testing units and
calculating balance would likely need to be improved.
Something such as a Deep Reinforcement Learning agent
could help solve some of these problems, but it would
also introduce new ones. For example, training would be
a problem since each new unit would functionally alter
the MDP. Another way of incorporating our work into
a larger game would be to use it in areas other than a
1v1 competitive game mode. Cooperative play or cam-
paign modes where humans play against the computer
are areas where new and unique content is valuable and
balance is less of a concern. Using our technique with
more of a focus on generating unique units could allow
for new types of RTS game designs.

9. Conclusions

In this paper, we have shown how it is possible to use
Search-Based PCG and MCTS to generate new units for
RTS games. For the first time, we defined the problem
of how to generate balanced and useful RTS units. Our
method relies on a fitness function designed to evalu-
ate the quality of a generated unit based off the perfor-
mance results of MCTS agents playing games against
one another with and without the unit. We presented ten
unique and balanced units generated for microRTS and
compared them against each other. We evaluated these
units in a large-scale MCTS study and found evidence
for their utility and balance. This provides evidence to
the utility of our problem definition and approach for the
task of RTS unit generation.

10. Acknowledgments

We acknowledge the support of the Alberta Machine
Intelligence Institute (Amii).

References

(1]
(2]

(3]

(4]

(7]

(8]

(9]

(12]

(13]

Blizzard, Starcraft 2 patch notes, https://liquipedia.
net/starcraft2/Patches, 2022. Accessed: 2022-05-16.
V. Bulitko, M. Walters, M. R. G. Brown, Evolving
npc behaviours in a-life with player proxies, in:
AIIDE Workshops, 2018.

E. Butler, K. Siu, A. Zook, Program synthesis as
a generative method, in: FDG, 2017, pp. 6:1-6:10.
URL: https://doi.org/10.1145/3102071.3102076.

R. Lara-Cabrera, C. Cotta, A. Fernandez-Leiva, Pro-
cedural map generation for a rts game, 2012.

R. Lara-Cabrera, C. Cotta, A. J. Fernandez-Leiva, A
review of computational intelligence in rts games,
in: 2013 IEEE Symposium on Foundations of Com-
putational Intelligence (FOCI), 2013, pp. 114-121.
doi:10.1109/FOCI.2013.6602463.

C. Silva, R. O. Moraes, L. H. S. Lelis, K. Gal, Strategy
generation for multiunit real-time games via voting,
IEEE Transactions on Games 11 (2019) 426-435.
doi:10.1109/TG.2018.2848913.

P. Garcia-Sanchez, A. Fernandez-Ares, A. M. Mora,
P. A. Castillo, J. Gonzalez, J. J. M. Guervés, Tree
depth influence in genetic programming for gener-
ation of competitive agents for rts games, in: A. L.
Esparcia-Alcazar, A. M. Mora (Eds.), Applications
of Evolutionary Computation, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2014, pp. 411-421.

S. Bangay, O. Makin, Generating an attribute
space for analyzing balance in single unit rts game
combat, in: 2014 IEEE Conference on Compu-
tational Intelligence and Games, 2014, pp. 1-8.
doi:10.1109/C1G.2014.6932885.

S. Ontanon, The combinatorial multi-armed bandit
problem and its application to real-time strategy
games, Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Enter-
tainment 9 (2021) 58-64. URL: https://ojs.aaai.org/
index.php/AIIDE/article/view/12681.

A. Zook, B. Harrison, M. O. Riedl, Monte-carlo
tree search for simulation-based strategy analysis,
CoRR abs/1908.01423 (2019). URL: http://arxiv.org/
abs/1908.01423. arXiv:1908.01423.

M. Nogueira-Collazo, C. C. Porras, A. J. Fernandez-
Leiva, Competitive algorithms for coevolving both
game content and ai. a case study: <italic>planet
wars</italic>, IEEE Transactions on Computational
Intelligence and Al in Games 8 (2016) 325-337.
doi:10.1109/TCIAIG.2015.2499281.

R. Lara-Cabrera, C. Cotta, A. J. Fernindez-Leiva, A
self-adaptive evolutionary approach to the evolu-
tion of aesthetic maps for a rts game, in: 2014 IEEE
Congress on Evolutionary Computation (CEC),
2014, pp. 298-304. doi:10.1109/CEC. 2014.6900562.
R. Lara-Cabrera, C. Cotta, A. Fernandez-

(17]

(18]

Leiva, Geometrical vs topological measures
for the evolution of aesthetic maps in a rts
game, Entertainment Computing 5 (2014)
251-258. URL: https://www.sciencedirect.com/
science/article/pii/S187595211400024X. doi:https:
//doi.org/10.1016/j.entcom.2014.08.003.

J. Togelius, M. Preuss, N. Beume, S. Wessing,
J. Hagelback, G. N. Yannakakis, Multiobjective
exploration of the starcraft map space, in: Pro-
ceedings of the 2010 IEEE Conference on Compu-
tational Intelligence and Games, 2010, pp. 265-272.
doi:10.1109/ITW.2010.5593346.

J. Togelius, M. Preuss, G. N. Yannakakis, Towards
multiobjective procedural map generation, in: Pro-
ceedings of the 2010 Workshop on Procedural Con-
tent Generation in Games, PCGames ’10, Associa-
tion for Computing Machinery, New York, NY, USA,
2010. URL: https://doi.org/10.1145/1814256.1814259.
doi:10.1145/1814256.1814259.

B. Pell, A strategic metagame player
for general chess-like games, Computa-
tional Intelligence 12 (1996) 177-198. URL:
https://onlinelibrary.wiley.com/doi/abs/10.
1111/j.1467-8640.1996.tb00258.x. doi:https:
//doi.org/10.1111/3.1467-8640.1996.tb00258.x.

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-

8640.1996.tb00258.x.

Mike Cook, Getting started in automated game
designt, https://www.youtube.com/watch?v=
dZv-vRrnHDA&t=827s, 2020. Accessed: 2020-05-
19.

M. Guzdial, M. Riedl, Automated game design
via conceptual expansion, Proceedings of the
AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment 14 (2018) 31-37.
URL: https://ojs.aaai.org/index.php/AIIDE/article/
view/13022.

C. Browne, F. Maire, Evolutionary game design,
Computational Intelligence and Al in Games, IEEE
Transactions on 2 (2010) 1 — 16. doi:10.1109/TCIAIG.
2010.2041928.

J. Pfau, A. Liapis, G. N. Yannakakis, R. Malaka, Dun-
geons amp; replicants ii: Automated game balanc-
ing across multiple difficulty dimensions via deep
player behavior modeling, IEEE Transactions on
Games (2022) 1-1. doi:10.1109/TG. 2022.3167728.

https://liquipedia.net/starcraft2/Patches
https://liquipedia.net/starcraft2/Patches
https://doi.org/10.1145/3102071.3102076
http://dx.doi.org/10.1109/FOCI.2013.6602463
http://dx.doi.org/10.1109/TG.2018.2848913
http://dx.doi.org/10.1109/CIG.2014.6932885
https://ojs.aaai.org/index.php/AIIDE/article/view/12681
https://ojs.aaai.org/index.php/AIIDE/article/view/12681
http://arxiv.org/abs/1908.01423
http://arxiv.org/abs/1908.01423
http://arxiv.org/abs/1908.01423
http://dx.doi.org/10.1109/TCIAIG.2015.2499281
http://dx.doi.org/10.1109/CEC.2014.6900562
https://www.sciencedirect.com/science/article/pii/S187595211400024X
https://www.sciencedirect.com/science/article/pii/S187595211400024X
http://dx.doi.org/https://doi.org/10.1016/j.entcom.2014.08.003
http://dx.doi.org/https://doi.org/10.1016/j.entcom.2014.08.003
http://dx.doi.org/10.1109/ITW.2010.5593346
https://doi.org/10.1145/1814256.1814259
http://dx.doi.org/10.1145/1814256.1814259
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.1996.tb00258.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.1996.tb00258.x
http://dx.doi.org/https://doi.org/10.1111/j.1467-8640.1996.tb00258.x
http://dx.doi.org/https://doi.org/10.1111/j.1467-8640.1996.tb00258.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8640.1996.tb00258.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8640.1996.tb00258.x
https://www.youtube.com/watch?v=dZv-vRrnHDA&t=827s
https://www.youtube.com/watch?v=dZv-vRrnHDA&t=827s
https://ojs.aaai.org/index.php/AIIDE/article/view/13022
https://ojs.aaai.org/index.php/AIIDE/article/view/13022
http://dx.doi.org/10.1109/TCIAIG.2010.2041928
http://dx.doi.org/10.1109/TCIAIG.2010.2041928
http://dx.doi.org/10.1109/TG.2022.3167728

	1 Introduction
	2 Related Work
	3 Background
	4 System Overview
	4.1 Search Space
	4.1.1 Causes:
	4.1.2 Effects:

	4.2 Evaluator
	4.3 Search Method

	5 Units Generated
	6 Evaluation
	7 Results
	8 Limitations and Future Work
	9 Conclusions
	10 Acknowledgments

